" Why Choose VPSA System?"

VPSA oxygenation system uses ambient air as the raw material, featuring low operating energy consumption and requiring no air compression, purification, or cryogenic systems. They can start up in just five minutes, with molecular sieves lasting up to ten years. The oxygen production cost per unit is significantly lower than that of other technologies, making VPSA the most energy-efficient, reliable, and cost-effective oxygen supply solution available on the market.

Method	Purification	Cryogenic	Air Source	Pressure	Start-up	Sieve Life	Energy Consumption kWh/Nm³	Operating * Cost USD/Nm³
VPSA	×	×	Ambient Air	±50 kPa	5 min	10 yrs	0.3	≈ 0.033
PSA	\checkmark	×	Compressed Air	0.4 MPa	5 min	5 yrs	1.1	≈ 0.121
Cryogenic	\checkmark	\checkmark	Cooled Air	1.2 MPa	20 h	5 yrs	0.6	≈ 0.066
LOX	×	V	Liquid O₂	1.2 MPa	5 min	5 yrs	/	≈ 0.2

^{*}Including transportation and procurement costs *Based on the global average electricity price: \$0.11/kWh

VPSA Advantages

Low Operating Cost

Consumes less energy than PSA and cryogenic systems, with no transportation or storage costs — offering a more economical oxygen supply.

Fast Start-Up

Delivers high-purity oxygen within just 5 minutes of start-up, providing quick response for immediate oxygen demand.

Oil-Free System

Both the blower and vacuum pump are oilfree, preventing any oil contamination and ensuring safe, clean system operation.

No Dryer Required

Built-in drying layer eliminates the need for external air purification equipment, resulting in a simpler and more compact system.

emission reduction.

Long Service Life

Equipped with lithium-based molecular sieves lasting up to 10 years — outperforming traditional PSA and cryogenic systems.

Environmentally Friendly

Uses ambient air as raw material, eliminating

transport emissions and enabling low-carbon

operation to support energy saving and

Enhanced Safety

Operates entirely under low pressure, minimizing risks associated with highpressure cylinders and ensuring operator and

Quick Energy Payback

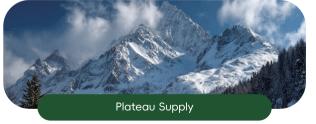
Variable-frequency blower and vacuum pump operate at only 60% of rated power, achieving significant energy savings and a short return-on-investment period.

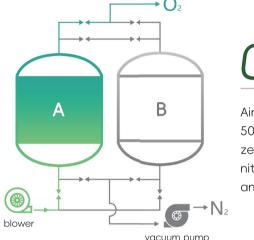
Applications

: +86 153-7202-6555

: www.kstkmanufacturing.com

: contact@kstkmanufacturing.com



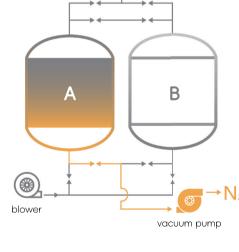

VPSA Oxygen Generation System

——An energy efficient solution for large-scale oxygen production

" What is VPSA System?"

Vacuum Pressure Swing Adsorption (VPSA) oxygen generation system is designed to efficiently extract high-purity oxygen from ambient air. This technology operates through alternating low-pressure and vacuum adsorption cycles, ensuring stable oxygen purity while significantly reducing energy consumption - making it an ideal solution for large-scale oxygen demand.

Principle of VPSA Technology



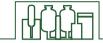
Adsorption Phase

Air is compressed by the air blower to approximately 50 kPa, then enters the adsorption tower filled with zeolite molecular sieves. The sieve selectively adsorbs nitrogen, allowing high-purity oxygen to pass through and be collected as the product gas.

2 Desorption and Regeneration Phase

Once the molecular sieve becomes saturated, the system automatically switches to the desorption phase. A vacuum pump reduces the tower pressure to around -50 kPa, releasing the adsorbed nitrogen while regenerating the molecular sieve for the next cycle.

vacuum pump


Bequalization and Backflush Phase

Before reaching the lowest pressure, part of the produced oxygen returns to the regenerating tower for pressure equalization and backflushing of residual nitrogen, improving regeneration efficiency. VPSA systems use two towers operating alternately to ensure continuous oxygen generation, low energy consumption, and stable performance.

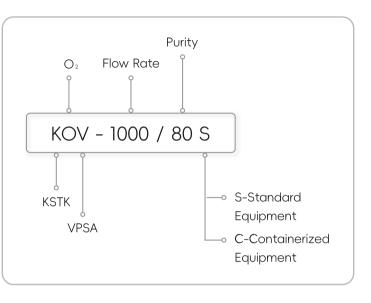
connected to power.

OxyCube™ - Containerized VPSA Oxygen Station

—— "An Integrated Oxygen Supply Solution"

OxyCube™ is a containerized VPSA oxygen station designed by KSTK, featuring a plug-and-play design for diverse environments. It integrates the air blower, vacuum pump, heat exchanger, control cabinet, power distribution cabinet, and the VPSA unit—with an optional oxygen booster—inside a standard ISO container. Requiring no installation or civil work, OxyCube™ delivers stable, high-purity oxygen on demand, removing the need for liquid oxygen or cylinders. Each unit is fully assembled, tested, and ready for immediate operation once

With advanced insulation, ventilation, and intelligent temperature control, it operates reliably from -20°C to +40°C, ensuring continuous oxygen supply for remote sites, temporary hospitals, and industrial use.



Product Specifications

Oxygen Output* (Nm³/hr)	Oxygen Purity* (%)	Oxygen Pressure* (MPa)	Installed Power (kW)	Operating Power (kW)	Container Selection
50	93	0.015	22	15	40HQ
150	93	0.015	78	45	40HQ
200	93	0.015	95	60	40HQ
300	93	0.015	150	90	2*40HQ
500	93	0.015	245	150	3*40HQ

^{*} All performance parameters are calculated based on standard sea-level conditions.

Model Definition

Heat Exchanger •—

Oxygen Outlet •—

Oxygen Purity	80 ~ 93%
Oxygen Flow Rate	40 ~ 7500Nm³/hr
Oxygen Dew Point	-50 ~ -30° C
Oxygen Pressure	0.015 ~ 20MPa (with booster)
Operating Pressure	±0.05MPa
Inlet Air Temperature	20 ~ 35℃
Power Supply Voltage	Customizable

Muffler

Composite impedance silencer, reducing noise from 95 dB to 70 dB.

Product Specifications

offering a more sustainable and cost-effective solution.

intelligent energy-saving mode further helps customers reduce operating costs.

ygen Output *	Oxygen Purity*	Oxygen Pressure*	Installed Power	Operating Power	Water Consun	nption (T/h)
(Nm³/hr)	(%)	(MPa)	(kW)	(kW)	Cooling Water	Soft Water
2000	93	0.015	1000	580	70	2
3000	93	0.015	1400	870	85	2.5
4500	93	0.015	2000	1300	100	3
5500	93	0.015	2500	1600	120	3
7500	93	0.015	2500	1600	120	3

OxyVance™ - Large-Scale VPSA Oxygen Generator

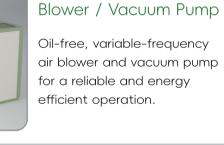
OxyVance™ is KSTK's large-scale VPSA oxygen generation system, utilizing lithium-based molecular sieves to

efficiently produce oxygen at ambient temperature and low pressure, without the need for cryogenic processes.

Compared to liquid oxygen tanks and cylinder delivery, OxyVance™ generates oxygen on demand at the site,

Engineered by KSTK's technical team, the system features a compact modular design with radial-flow adsorption

towers, significantly enhancing oxygen production efficiency and reliability. OxyVance™ can produce oxygen


within 5 minutes of start-up and supports flexible configurations such as multi-tower parallel operation. Its built-in

—— "Sustainable Oxygen Supply, Smarter Industrial Choice"

* All performance parameters are calculated based on standard sea-level conditions.

Key Components Advantages

Heat Exchanger

All-copper finned tube

design with high-efficiency

air cooling to ensure low

pressure drop.

Power Distribution Cabinet

Control Cabinet

PLC featuring a 7-inch

Adsorption Tower

Vacuum Pump -

High-quality Valves

Adsorption Tower

→ Muffler

Newly designed highefficiency airflow distribution tower with real-time pressure and temperature monitoring.

High-quality Valves Stainless steel double-

eccentric, double-packing valves with low torque and zero leakage.

Technical Specifications

CCI	ii iiCai	opeen	icatioi

^{*} Flow rate, purity, pressure, and power supply voltage can be customized as required.

^{*} Flow rate, purity, pressure, and power supply voltage can be customized as required.